Random Kneser graphs and hypergraphs

نویسنده

  • Andrey Kupavskii
چکیده

A Kneser graph KGn,k is a graph whose vertices are all k-element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lovász states that the chromatic number of a Kneser graph KGn,k is equal to n − 2k + 2. In this paper we discuss the chromatic number of random Kneser graphs and hypergraphs. It was studied in two recent papers, one due to Kupavskii, who proposed the problem and studied it in the graph case, and the more recent one due to Alishahi and Hajiabolhassan. The authors of the latter paper had extended the result of Kupavskii to the case of general Kneser hypergraphs. Moreover, they have improved the bounds of Kupavskii in the graph case for many values of parameters. In the present paper we present a purely combinatorial approach to the problem based on blow-ups of graphs, which gives much better bounds on the chromatic number of random Kneser and Schrijver graphs and Kneser hypergraphs. The central idea of using blow-ups is due to Noga Alon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colorful Subhypergraphs in Kneser Hypergraphs

Using a Zq-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hy...

متن کامل

The (p, q)-extremal problem and the fractional chromatic number of Kneser hypergraphs

The problem of computing the chromatic number of Kneser hypergraphs has been extensively studied over the last 40 years and the fractional version of the chromatic number of Kneser hypergraphs is only solved for particular cases. The (p, q)-extremal problem consists in finding the maximum number of edges on a k-uniform hypergraph H with n vertices such that among any p edges some q of them have...

متن کامل

The chromatic number of almost stable Kneser hypergraphs

Let V (n, k, s) be the set of k-subsets S of [n] such that for all i, j ∈ S, we have |i−j| ≥ s We define almost s-stable Kneser hypergraph KG ( [n] k )∼ s-stab to be the r-uniform hypergraph whose vertex set is V (n, k, s) and whose edges are the r-uples of disjoint elements of V (n, k, s). With the help of a Zp-Tucker lemma, we prove that, for p prime and for any n ≥ kp, the chromatic number o...

متن کامل

On the Chromatic Thresholds of Hypergraphs

Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c (|V (H)| r−1 ) has bounded chromatic number. This parameter has a long history for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs. Luczak and Thomassé recently pro...

متن کامل

Stable Kneser Hypergraphs and Ideals in N with the Nikodým Property

We use stable Kneser hypergraphs to construct ideals in N which are not nonatomic yet have the Nikodým property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016